Die seltsame Verwandlung eines Dreiecks in ein gleiches, mit Loch. Dieses schöne "Paradoxon" hat Paul Curry 1953 ersonnen, ein Zauberkünstler aus New York City. | Der Knick ist recht klein (0.024 Grad) und liegt nun, sehr schwer erkennbar, am Rand der geometrischen Figur. |
Ein halbes Curry-Dreieck hat Martin Gardner 1956 ("Mathematics, Magic and Mystery") vorgeschlagen und wurde von Roy Nauw of Kloetinge (2000) wieder entdeckt. | Der Lehrer von Roy, Floor van Lamoen, veröffentlichte es in der Geometry Puzzles Newsgroup (archiviert im Math Forum) |
http://mathforum.org |
Wer mag, kann wieder die Fibonacci-Folge bemühen, trifft aber dann den Kern der Sache nicht mehr. Es gibt wesentlich mehr Dreieck-Kombinationen und auch mehr als nur eine verschwundene / erzeugte Flächeneinheit. Deshalb nur kurz:
F(n) * F(n+1) - F(n-1) * F(n+2) = +/- 1
|
Um eine Fülle von diesen Dreiecks-Puzzles zu erzeugen, hilft eine Liste von Winkel- und Rechteckdifferenzen. So beträgt in diesem Beispiel die Flächendifferenz 2 Einheiten. | |
Winkeldifferenzen unter 0,03 Grad sind kaum sichtbar. Mit der folgende Tabelle ist ein Dreieck-Puzzle kaum ein Problem, bis auf die geschickte Zerlegungung der Rechteckfläche. |
Dreieck 1 | Dreieck 2 | Differenzen | |||
Breite | Höhe | Breite | Höhe | Fläche | Winkel |
6 | 5 | 5 | 4 | +1 | -0.0199973 |
7 | 1 | 6 | 1 | -1 | +0.0232516 |
7 | 3 | 5 | 2 | +1 | -0.0243854 |
7 | 4 | 5 | 3 | -1 | +0.0212734 |
7 | 5 | 4 | 3 | -1 | +0.0232516 |
7 | 6 | 6 | 5 | +1 | -0.0138880 |
8 | 1 | 7 | 1 | -1 | +0.0175421 |
8 | 3 | 5 | 2 | -1 | +0.0217357 |
8 | 5 | 3 | 2 | -1 | +0.0294033 |
8 | 5 | 5 | 3 | +1 | -0.0181798 |
8 | 5 | 6 | 4 | -2 | +0.0294033 |
8 | 6 | 7 | 5 | +2 | -0.0232516 |
8 | 7 | 6 | 5 | +2 | -0.0240917 |
8 | 7 | 7 | 6 | +1 | -0.0102037 |
9 | 1 | 8 | 1 | -1 | +0.0136978 |
9 | 2 | 4 | 1 | -1 | +0.0263097 |
9 | 2 | 5 | 1 | +1 | -0.0212734 |
9 | 2 | 8 | 2 | -2 | +0.0263097 |
9 | 4 | 7 | 3 | +1 | -0.0133325 |
9 | 5 | 7 | 4 | -1 | +0.0120476 |
9 | 6 | 8 | 5 | +3 | -0.0294033 |
9 | 7 | 4 | 3 | +1 | -0.0175421 |
9 | 7 | 5 | 4 | -1 | +0.0136978 |
9 | 7 | 8 | 6 | +2 | -0.0175421 |
9 | 8 | 7 | 6 | +2 | -0.0180161 |
9 | 8 | 8 | 7 | +1 | -0.0078123 |
10 | 1 | 8 | 1 | -2 | +0.0246863 |
10 | 1 | 9 | 1 | -1 | +0.0109886 |
10 | 2 | 9 | 2 | -2 | +0.0212734 |
10 | 3 | 7 | 2 | +1 | -0.0131571 |
10 | 4 | 7 | 3 | -2 | +0.0243854 |
10 | 4 | 8 | 3 | +2 | -0.0217357 |
10 | 6 | 7 | 4 | +2 | -0.0212734 |
10 | 6 | 8 | 5 | -2 | +0.0181798 |
10 | 7 | 3 | 2 | +1 | -0.0227234 |
10 | 7 | 6 | 4 | +2 | -0.0227234 |
10 | 7 | 7 | 5 | -1 | +0.0095235 |
10 | 7 | 9 | 6 | +3 | -0.0227234 |
10 | 8 | 6 | 5 | -2 | +0.0199973 |
10 | 8 | 9 | 7 | +2 | -0.0136978 |
10 | 9 | 7 | 6 | +3 | -0.0241888 |
10 | 9 | 8 | 7 | +2 | -0.0139851 |
10 | 9 | 9 | 8 | +1 | -0.0061728 |
11 | 1 | 9 | 1 | -2 | +0.0199973 |
11 | 1 | 10 | 1 | -1 | +0.0090088 |
11 | 2 | 5 | 1 | -1 | +0.0175421 |
11 | 2 | 6 | 1 | +1 | -0.0147048 |
11 | 2 | 10 | 2 | -2 | +0.0175421 |
11 | 3 | 4 | 1 | +1 | -0.0212734 |
11 | 3 | 7 | 2 | -1 | +0.0120476 |
11 | 3 | 8 | 2 | +2 | -0.0212734 |
11 | 3 | 10 | 3 | -3 | +0.0252047 |
11 | 4 | 3 | 1 | +1 | -0.0270204 |
11 | 4 | 6 | 2 | +2 | -0.0270204 |
11 | 4 | 8 | 3 | -1 | +0.0099997 |
11 | 4 | 9 | 3 | +3 | -0.0270204 |
11 | 5 | 7 | 3 | +2 | -0.0217357 |
11 | 5 | 9 | 4 | +1 | -0.0084032 |
11 | 6 | 7 | 4 | -2 | +0.0197994 |
11 | 6 | 9 | 5 | -1 | +0.0077518 |
11 | 7 | 3 | 2 | -1 | +0.0212734 |
11 | 7 | 5 | 3 | +2 | -0.0263097 |
11 | 7 | 6 | 4 | -2 | +0.0212734 |
11 | 7 | 8 | 5 | +1 | -0.0081299 |
11 | 7 | 9 | 6 | -3 | +0.0212734 |
11 | 7 | 10 | 6 | +4 | -0.0263097 |
11 | 8 | 4 | 3 | -1 | +0.0147048 |
11 | 8 | 7 | 5 | +1 | -0.0085468 |
11 | 8 | 8 | 6 | -2 | +0.0147048 |
11 | 8 | 10 | 7 | +3 | -0.0180703 |
11 | 9 | 5 | 4 | +1 | -0.0109886 |
11 | 9 | 6 | 5 | -1 | +0.0090088 |
11 | 9 | 7 | 6 | -3 | +0.0228968 |
11 | 9 | 9 | 7 | +4 | -0.0246863 |
11 | 9 | 10 | 8 | +2 | -0.0109886 |
11 | 10 | 7 | 6 | +4 | -0.0291888 |
11 | 10 | 8 | 7 | +3 | -0.0189851 |
11 | 10 | 9 | 8 | +2 | -0.0111727 |
11 | 10 | 10 | 9 | +1 | -0.0050000 |
12 | 1 | 9 | 1 | -3 | +0.0275160 |
12 | 1 | 10 | 1 | -2 | +0.0165274 |
12 | 1 | 11 | 1 | -1 | +0.0075187 |
12 | 2 | 7 | 1 | +2 | -0.0232516 |
12 | 2 | 11 | 2 | -2 | +0.0147048 |
12 | 3 | 9 | 2 | +3 | -0.0263097 |
12 | 3 | 11 | 3 | -3 | +0.0212734 |
12 | 4 | 11 | 4 | -4 | +0.0270204 |
12 | 5 | 5 | 2 | +1 | -0.0142847 |
12 | 5 | 7 | 3 | -1 | +0.0101007 |
12 | 5 | 9 | 4 | -3 | +0.0234332 |
12 | 5 | 10 | 4 | +2 | -0.0142847 |
12 | 7 | 5 | 3 | -1 | +0.0123451 |
12 | 7 | 7 | 4 | +1 | -0.0089283 |
12 | 7 | 9 | 5 | +3 | -0.0209759 |
12 | 7 | 10 | 6 | -2 | +0.0123451 |
12 | 7 | 11 | 6 | +5 | -0.0287277 |
12 | 8 | 8 | 5 | +4 | -0.0294033 |
12 | 8 | 10 | 7 | -4 | +0.0227234 |
12 | 8 | 11 | 7 | +4 | -0.0212734 |
12 | 9 | 7 | 5 | +3 | -0.0232516 |
12 | 9 | 9 | 7 | -3 | +0.0175421 |
12 | 9 | 11 | 8 | +3 | -0.0147048 |
12 | 10 | 5 | 4 | +2 | -0.0199973 |
12 | 10 | 7 | 6 | -2 | +0.0138880 |
12 | 10 | 8 | 7 | -4 | +0.0240917 |
12 | 10 | 10 | 8 | +4 | -0.0199973 |
12 | 10 | 11 | 9 | +2 | -0.0090088 |
12 | 11 | 8 | 7 | +4 | -0.0231173 |
12 | 11 | 9 | 8 | +3 | -0.0153049 |
12 | 11 | 10 | 9 | +2 | -0.0091322 |
12 | 11 | 11 | 10 | +1 | -0.0041322 |
13 | 1 | 10 | 1 | -3 | +0.0228968 |
13 | 1 | 11 | 1 | -2 | +0.0138880 |
13 | 1 | 12 | 1 | -1 | +0.0063693 |
13 | 2 | 6 | 1 | -1 | +0.0124993 |
13 | 2 | 7 | 1 | +1 | -0.0107523 |
13 | 2 | 8 | 1 | +3 | -0.0282943 |
13 | 2 | 11 | 2 | -4 | +0.0272042 |
13 | 2 | 12 | 2 | -2 | +0.0124993 |
13 | 3 | 4 | 1 | -1 | +0.0181798 |
13 | 3 | 5 | 1 | +2 | -0.0294033 |
13 | 3 | 8 | 2 | -2 | +0.0181798 |
13 | 3 | 9 | 2 | +1 | -0.0081299 |
13 | 3 | 10 | 2 | +4 | -0.0294033 |
13 | 3 | 12 | 3 | -3 | +0.0181798 |
13 | 4 | 3 | 1 | -1 | +0.0232516 |
13 | 4 | 6 | 2 | -2 | +0.0232516 |
13 | 4 | 7 | 2 | +2 | -0.0201993 |
13 | 4 | 9 | 3 | -3 | +0.0232516 |
13 | 4 | 10 | 3 | +1 | -0.0070421 |
13 | 4 | 12 | 4 | -4 | +0.0232516 |
13 | 5 | 5 | 2 | -1 | +0.0133325 |
13 | 5 | 8 | 3 | +1 | -0.0084032 |
13 | 5 | 10 | 4 | -2 | +0.0133325 |
13 | 5 | 11 | 4 | +3 | -0.0184028 |
13 | 5 | 12 | 5 | -5 | +0.0276173 |
13 | 6 | 7 | 3 | +3 | -0.0275160 |
13 | 6 | 9 | 4 | +2 | -0.0141834 |
13 | 6 | 11 | 5 | +1 | -0.0057803 |
13 | 7 | 7 | 4 | -3 | +0.0252047 |
13 | 7 | 9 | 5 | -2 | +0.0131571 |
13 | 7 | 11 | 6 | -1 | +0.0054054 |
13 | 8 | 5 | 3 | +1 | -0.0112355 |
13 | 8 | 8 | 5 | -1 | +0.0069443 |
13 | 8 | 10 | 6 | +2 | -0.0112355 |
13 | 8 | 11 | 7 | -3 | +0.0150742 |
13 | 8 | 12 | 7 | +5 | -0.0235805 |
13 | 9 | 3 | 2 | +1 | -0.0175421 |
13 | 9 | 6 | 4 | +2 | -0.0175421 |
13 | 9 | 7 | 5 | -2 | +0.0147048 |
13 | 9 | 9 | 6 | +3 | -0.0175421 |
13 | 9 | 10 | 7 | -1 | +0.0051813 |
13 | 9 | 11 | 8 | -5 | +0.0232516 |
13 | 9 | 12 | 8 | +4 | -0.0175421 |
13 | 10 | 4 | 3 | +1 | -0.0121945 |
13 | 10 | 5 | 4 | -2 | +0.0190453 |
13 | 10 | 8 | 6 | +2 | -0.0121945 |
13 | 10 | 9 | 7 | -1 | +0.0053475 |
13 | 10 | 10 | 8 | -4 | +0.0190453 |
13 | 10 | 11 | 8 | +6 | -0.0268993 |
13 | 10 | 12 | 9 | +3 | -0.0121945 |
13 | 11 | 5 | 4 | +3 | -0.0275160 |
13 | 11 | 6 | 5 | +1 | -0.0075187 |
13 | 11 | 7 | 6 | -1 | +0.0063693 |
13 | 11 | 8 | 7 | -3 | +0.0165731 |
13 | 11 | 9 | 8 | -5 | +0.0243854 |
13 | 11 | 10 | 8 | +6 | -0.0275160 |
13 | 11 | 11 | 9 | +4 | -0.0165274 |
13 | 11 | 12 | 10 | +2 | -0.0075187 |
13 | 12 | 8 | 7 | +5 | -0.0265895 |
13 | 12 | 9 | 8 | +4 | -0.0187771 |
13 | 12 | 10 | 9 | +3 | -0.0126044 |
13 | 12 | 11 | 10 | +2 | -0.0076044 |
13 | 12 | 12 | 11 | +1 | -0.0034722 |
http://www.mathematik.uni-bielefeld.de/%7Esillke/PUZZLES/jigsaw-paradox.html |
Letzte Änderung 12.9.2004 |